A Dynamic Role of TBX3 in the Pluripotency Circuitry
نویسندگان
چکیده
Pluripotency represents a cell state comprising a fine-tuned pattern of transcription factor activity required for embryonic stem cell (ESC) self-renewal. TBX3 is the earliest expressed member of the T-box transcription factor family and is involved in maintenance and induction of pluripotency. Hence, TBX3 is believed to be a key member of the pluripotency circuitry, with loss of TBX3 coinciding with loss of pluripotency. We report a dynamic expression of TBX3 in vitro and in vivo using genetic reporter tools tracking TBX3 expression in mouse ESCs (mESCs). Low TBX3 levels are associated with reduced pluripotency, resembling the more mature epiblast. Notably, TBX3-low cells maintain the intrinsic capability to switch to a TBX3-high state and vice versa. Additionally, we show TBX3 to be dispensable for induction and maintenance of naive pluripotency as well as for germ cell development. These data highlight novel facets of TBX3 action in mESCs.
منابع مشابه
TBX3 Directs Cell-Fate Decision toward Mesendoderm
Cell-fate decisions and pluripotency are dependent on networks of key transcriptional regulators. Recent reports demonstrated additional functions of pluripotency-associated factors during early lineage commitment. The T-box transcription factor TBX3 has been implicated in regulating embryonic stem cell self-renewal and cardiogenesis. Here, we show that TBX3 is dynamically expressed during spec...
متن کاملCanonical Wnt/β-Catenin Regulation of Liver Receptor Homolog-1 Mediates Pluripotency Gene Expression
Delineating the signaling pathways that underlie ESC pluripotency is paramount for development of ESC applications in both the research and clinical settings. In culture pluripotency is maintained by leukemia inhibitory factor (LIF) stimulation of two separate signaling axes: Stat3/Klf4/Sox2 and PI3K/Tbx3/Nanog, which converge in the regulation of Oct4 expression. However, LIF signaling is not ...
متن کاملGlycogen Synthase Kinase-3 Inhibition Enhances Translation of Pluripotency-Associated Transcription Factors to Contribute to Maintenance of Mouse Embryonic Stem Cell Self-Renewal
Maintenance of embryonic stem cell (ESC) self-renewal and pluripotency are controlled by extrinsic factors, molecular signaling pathways and transcriptional regulators. While many of the key players have been studied in depth, how the molecular signals interact with transcription factors of the pluripotency network to regulate their action remains less well understood. Inhibition of glycogen sy...
متن کاملTbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm
Tbx3, a member of the T-box family, plays important roles in development, stem cells, nuclear reprogramming, and cancer. Loss of Tbx3 induces differentiation in mouse embryonic stem cells (mESCs). However, we show that mESCs exist in an alternate stable pluripotent state in the absence of Tbx3. In-depth transcriptome analysis of this mESC state reveals Dppa3 as a direct downstream target of Tbx...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کامل